MSC to adipocyte (mouse): Difference between revisions
From FANTOM5_SSTAR
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
<br> | <br> | ||
References:<br> | References:<br> | ||
1. Burkhardt R, Kettner G, Bohm W, Schmidmeier M, Schlag R, et al. Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone (1987) 8(3):157-164. PMID:3606907<br> | 1. Burkhardt R, Kettner G, Bohm W, Schmidmeier M, Schlag R, et al. Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone (1987) 8(3):157-164. <html><a href='http://www.ncbi.nlm.nih.gov/pubmed/3606907' target='_blank'>PMID:3606907</a></html><br> | ||
2. Nuttall ME, Gimble JM. Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol (2004) 4(3):290–294. PMID:15140422<br> | 2. Nuttall ME, Gimble JM. Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol (2004) 4(3):290–294. <a href='http://www.ncbi.nlm.nih.gov/pubmed/15140422' target='_blank'>PMID:15140422</a></html><br> | ||
3. Tokuzawa Y, Yagi K, Yamashita Y, Nakachi Y, Nikaido I, et al. Id4, a new candidate gene for senile osteoporosis, acts as a molecular switch promoting osteoblast differentiation. PLoS Genet (2010) 6(7):e1001019. PMID:20628571<br> | 3. Tokuzawa Y, Yagi K, Yamashita Y, Nakachi Y, Nikaido I, et al. Id4, a new candidate gene for senile osteoporosis, acts as a molecular switch promoting osteoblast differentiation. PLoS Genet (2010) 6(7):e1001019. <html><a href='http://www.ncbi.nlm.nih.gov/pubmed/20628571' target='_blank'>PMID:20628571</a></html><br> | ||
4. Mizuno Y, Yagi K, Tokuzawa Y, Kanesaki-Yatsuka Y, Suda T, et al. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun (2008) 368(2):267-272. PMID:18230348.<br> | 4. Mizuno Y, Yagi K, Tokuzawa Y, Kanesaki-Yatsuka Y, Suda T, et al. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun (2008) 368(2):267-272. <a href='http://www.ncbi.nlm.nih.gov/pubmed/18230348' target='_blank'>PMID:18230348</a></html>.<br> | ||
|TCSample_description='''Cell line:'''<br> | |TCSample_description='''Cell line:'''<br> | ||
ST2 cells were obtained from RIKEN BioResource Center (BRC, Tsukuba, Japan). These cell line is bone marrow-derived stromal cell line. ST2 differentiated most efficiently into both osteoblasts and adipocytes [3].<br> | ST2 cells were obtained from RIKEN BioResource Center (BRC, Tsukuba, Japan). These cell line is bone marrow-derived stromal cell line. ST2 differentiated most efficiently into both osteoblasts and adipocytes [3].<br> |
Revision as of 16:21, 11 December 2014
Series: | IN_VITRO DIFFERENTIATION SERIES |
---|---|
Species: | Mouse (Mus musculus) |
Genomic View: | Zenbu |
Expression table: | [{{{tet_config}}} FILE] |
Link to TET: | [{{{tet_file}}} TET] |
Sample providers : | Yasushi Okazaki |
Germ layer: | {{{germ_layer}}} |
Primary cells or cell line: | {{{primary_cells}}} |
Time span: | {{{time_span}}} |
Number of time points: | {{{number_time_points}}} |
CollapseOverview |
---|
Senile osteoporosis is the most common metabolic bone disease. This disease is often accompanied by increasing adipocytes in bone marrow tissues [1]. The ectopic adipocytes differentiation following bone loss seems to be caused by unbalanced differentiation of mesenchymal stem cells (MSCs) [2]. Although several differentiation regulators of MSCs have already been reported, little is known about the regulatory dynamics of bi-directional adipocytes/osteoblasts differentiation. |
ExpandSample description |
---|
ExpandQuality control |
---|
Profiled time course samples
Only samples that passed quality controls (Arner et al. 2015) are shown here. The entire set of samples are downloadable from FANTOM5 human / mouse samples